FPTree.hpp 43.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2017-2019 DBIS Group - TU Ilmenau, All Rights Reserved.
3
 *
4
 * This file is part of our NVM-based Data Structures repository.
5
 *
6
7
8
 * This program is free software: you can redistribute it and/or modify it under the terms of the
 * GNU General Public License as published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
9
 *
10
11
12
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
13
 *
14
15
 * You should have received a copy of the GNU General Public License along with this program.
 * If not, see <http://www.gnu.org/licenses/>.
16
17
18
19
20
21
 */

#ifndef DBIS_FPTree_hpp_
#define DBIS_FPTree_hpp_

#include <array>
22
#include <bitset>
23
#include <cmath>
24
25
26
27
28
29
30
31
#include <iostream>

#include <libpmemobj++/make_persistent.hpp>
#include <libpmemobj++/p.hpp>
#include <libpmemobj++/persistent_ptr.hpp>
#include <libpmemobj++/transaction.hpp>
#include <libpmemobj++/utils.hpp>

32
#include "config.h"
33
#include "utils/ElementOfRankK.hpp"
34
#include "utils/PersistEmulation.hpp"
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

namespace dbis::fptree {

using pmem::obj::delete_persistent;
using pmem::obj::make_persistent;
using pmem::obj::p;
using pmem::obj::persistent_ptr;
using pmem::obj::transaction;

/**
 * A persistent memory implementation of a FPTree.
 *
 * @tparam KeyType the data type of the key
 * @tparam ValueType the data type of the values associated with the key
 * @tparam N the maximum number of keys on a branch node
 * @tparam M the maximum number of keys on a leaf node
 */
template<typename KeyType, typename ValueType, int N, int M>
class FPTree {
  // we need at least two keys on a branch node to be able to split
  static_assert(N > 2, "number of branch keys has to be >2.");
  // we need at least one key on a leaf node
  static_assert(M > 0, "number of leaf keys should be >0.");

#ifndef UNIT_TESTS
  private:
#else
  public:
#endif

  // Forward declarations
  struct LeafNode;
  struct BranchNode;

69
70
  struct Node {
    Node() : tag(BLANK) {};
71

72
    Node(persistent_ptr<LeafNode> leaf_) : tag(LEAF), leaf(leaf_) {};
73

74
    Node(BranchNode *branch_) : tag(BRANCH), branch(branch_) {};
75

76
    Node(const Node &other) { copy(other); };
77

78
    void copy(const Node &other) throw() {
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
      tag = other.tag;

      switch (tag) {
        case LEAF: {
          leaf = other.leaf;
          break;
        }
        case BRANCH: {
          branch = other.branch;
          break;
        }
        default: break;
      }
    }

94
    Node &operator=(Node other) {
95
96
97
98
99
      copy(other);
      return *this;
    }

    enum NodeType {
100
      BLANK, LEAF, BRANCH
101
102
103
104
105
106
107
    } tag;
    union {
      persistent_ptr<LeafNode> leaf;
      BranchNode *branch;
    };
  };

108
109
110
  struct alignas(64) LeafSearch {
    std::bitset<M> b;          //< bitset for valid entries
    std::array<uint8_t, M> fp; //< fingerprint array (n & 0xFF)
111
112
113
114
115
116
117
118

    unsigned int getFreeZero() const {
      unsigned int idx = 0;
      while (idx < M && b.test(idx)) ++idx;
      return idx;
    }
  };

119
120
121
122
123
124
125
  /**
   * A structure for representing a leaf node of a B+ tree.
   */
  struct LeafNode {
    /**
     * Constructor for creating a new empty leaf node.
     */
126
127
    LeafNode() : nextLeaf(nullptr), prevLeaf(nullptr) {}

128
    p<LeafSearch> search;                  //< helper structure for faster searches
129
130
    p<std::array<KeyType, M>> keys;        //< the actual keys
    p<std::array<ValueType, M>> values;    //< the actual values
131
132
    persistent_ptr<LeafNode> nextLeaf;     //< pointer to the subsequent sibling
    persistent_ptr<LeafNode> prevLeaf;     //< pointer to the preceeding sibling
133
134
135
136
137
138
139
140
141
142
143
144
145
  };

  /**
   * A structure for representing an branch node (branch node) of a B+ tree.
   */
  struct BranchNode {
    /**
     * Constructor for creating a new empty branch node.
     */
    BranchNode() : numKeys(0) {}

    unsigned int numKeys;                         //< the number of currently stored keys
    std::array<KeyType, N> keys;                  //< the actual keys
146
    std::array<Node, N + 1> children; //< pointers to child nodes (BranchNode or LeafNode)
147
148
149
150
151
152
153
154
155
  };

  /**
   * Create a new empty leaf node
   */
  persistent_ptr<LeafNode> newLeafNode() {
    auto pop = pmem::obj::pool_by_vptr(this);
    persistent_ptr<LeafNode> newNode = nullptr;
    transaction::run(pop, [&] {
156
157
158
159
160
161
162
163
164
165
166
      newNode = make_persistent<LeafNode>();
    });
    return newNode;
  }

  persistent_ptr<LeafNode> newLeafNode(const persistent_ptr<LeafNode> &other) {
    auto pop = pmem::obj::pool_by_vptr(this);
    persistent_ptr<LeafNode> newNode = nullptr;
    transaction::run(pop, [&] {
      newNode = make_persistent<LeafNode>(*other);
    });
167
168
169
170
171
172
    return newNode;
  }

  void deleteLeafNode(persistent_ptr<LeafNode> node) {
    auto pop = pmem::obj::pool_by_vptr(this);
    transaction::run(pop, [&] {
173
174
      delete_persistent<LeafNode>(node);
    });
175
176
177
178
179
180
  }

  /**
   * Create a new empty branch node
   */
  BranchNode *newBranchNode() {
181
    return new BranchNode();
182
183
184
  }

  void deleteBranchNode(BranchNode *node) {
185
    delete node;
186
187
188
189
190
191
192
193
  }

  /**
   * A structure for passing information about a node split to
   * the caller.
   */
  struct SplitInfo {
    KeyType key;                 //< the key at which the node was split
194
195
    Node leftChild;  //< the resulting lhs child node
    Node rightChild; //< the resulting rhs child node
196
197
198
199
  };

  unsigned int depth;         //< the depth of the tree, i.e. the number of levels (0 => rootNode is LeafNode)

200
  Node rootNode;     //< pointer to the root node
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  persistent_ptr<LeafNode> leafList; //<Pointer to the leaf at the most left position. Neccessary for recovery

  public:
  /**
   * Typedef for a function passed to the scan method.
   */
  using ScanFunc = std::function<void(const KeyType &key, const ValueType &val)>;
  /**
   * Iterator for iterating over the leaf nodes
   */
  class iterator {
    persistent_ptr<LeafNode> currentNode;
    std::size_t currentPosition;

    public:
    iterator() : currentNode(nullptr), currentPosition(0) {}
217
    iterator(const Node &root, std::size_t d) {
218
219
220
221
222
223
224
225
      // traverse to left-most key
      auto node = root;
      while (d-- > 0) {
        auto n = node.branch;
        node = n->children[0];
      }
      currentNode = node.leaf;
      currentPosition = 0;
226
      // Can not overflow as there are at least M/2 entries
227
      while(!currentNode->search.get_ro().b.test(currentPosition)) ++currentPosition;
228
229
230
    }

    iterator& operator++() {
231
      if (currentPosition >= M-1) {
232
233
        currentNode = currentNode->nextLeaf;
        currentPosition = 0;
234
        if (currentNode == nullptr) return *this;
235
236
        while(!currentNode->search.get_ro().b.test(currentPosition)) ++currentPosition;
      } else if (!currentNode->search.get_ro().b.test(++currentPosition)) ++(*this);
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
      return *this;
    }
    iterator operator++(int) {iterator retval = *this; ++(*this); return retval;}

    bool operator==(iterator other) const {return (currentNode == other.currentNode &&
        currentPosition == other.currentPosition);}
    bool operator!=(iterator other) const {return !(*this == other);}

    std::pair<KeyType, ValueType> operator*() {

      return std::make_pair(currentNode->keys.get_ro()[currentPosition], currentNode->values.get_ro()[currentPosition]);
    }

    // iterator traits
    using difference_type = long;
    using value_type = std::pair<KeyType, ValueType>;
    using pointer = const std::pair<KeyType, ValueType>*;
    using reference = const std::pair<KeyType, ValueType>&;
    using iterator_category = std::forward_iterator_tag;
  };
  iterator begin() { return iterator(rootNode, depth); }
  iterator end() { return iterator(); }
  /**
   * Constructor for creating a new  tree.
   */
  FPTree() {
    rootNode = newLeafNode();
264
265
    leafList = rootNode.leaf;
    depth = 0;
266
267
    LOG("created new FPTree with sizeof(BranchNode) = " << sizeof(BranchNode)
                            <<  ", sizeof(LeafNode) = " << sizeof(LeafNode));
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
  }

  /**
   * Destructor for the tree. Should delete all allocated nodes.
   */
  ~FPTree() {
    // Nodes are deleted automatically by releasing leafPool and branchPool.
  }

  /**
   * Insert an element (a key-value pair) into the tree. If the key @c key
   * already exists, the corresponding value is replaced by @c val.
   *
   * @param key the key of the element to be inserted
   * @param val the value that is associated with the key
   */
  void insert(const KeyType &key, const ValueType &val) {
    auto pop = pmem::obj::pool_by_vptr(this);
    transaction::run(pop, [&] {
287
      SplitInfo splitInfo;
288

289
290
      bool wasSplit = false;
      if (depth == 0) {
291
292
293
        // the root node is a leaf node
        auto n = rootNode.leaf;
        wasSplit = insertInLeafNode(n, key, val, &splitInfo);
294
      } else {
295
296
297
        // the root node is a branch node
        auto n = rootNode.branch;
        wasSplit = insertInBranchNode(n, depth, key, val, &splitInfo);
298
299
      }
      if (wasSplit) {
300
        // we had an overflow in the node and therefore the node is split
301
302
303
304
305
306
307
308
        auto root = newBranchNode();

        root->keys[0] = splitInfo.key;
        root->children[0] = splitInfo.leftChild;
        root->children[1] = splitInfo.rightChild;
        ++root->numKeys;
        rootNode.branch = root;
        ++depth;
309
      }
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    });
  }

  /**
   * Find the given @c key in the  tree and if found return the
   * corresponding value.
   *
   * @param key the key we are looking for
   * @param[out] val a pointer to memory where the value is stored
   *                 if the key was found
   * @return true if the key was found, false otherwise
   */
  bool lookup(const KeyType &key, ValueType *val)  {
    assert(val != nullptr);

    bool result = false;
    auto leafNode = findLeafNode(key);
    auto pos = lookupPositionInLeafNode(leafNode, key);
328
    if (pos < M) {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
      // we found it!
      *val = leafNode->values.get_ro()[pos];
      result = true;
    }
    return result;
  }

  /**
   * Delete the entry with the given key @c key from the tree.
   *
   * @param key the key of the entry to be deleted
   * @return true if the key was found and deleted
   */
  bool erase(const KeyType &key) {
    auto pop = pmem::obj::pool_by_vptr(this);
    bool result;
    transaction::run(pop, [&] {
346
      if (depth == 0) {
347
348
349
350
351
        // special case: the root node is a leaf node and
        // there is no need to handle underflow
        auto node = rootNode.leaf;
        assert(node != nullptr);
        result=eraseFromLeafNode(node, key);
352
      } else {
353
354
355
        auto node = rootNode.branch;
        assert(node != nullptr);
        result=eraseFromBranchNode(node, depth, key);
356
357
      }
    });
358
359
360
361
362
    return result;
  }
  /**
   * Recover the FPTree by iterating over the LeafList and using the recoveryInsert method.
   */
363
  void recover() {
364
    LOG("Starting RECOVERY of FPTree");
365
    persistent_ptr<LeafNode> currentLeaf = leafList;
366
    if (leafList == nullptr) {
367
      LOG("No data to recover FPTree");
368
      return;
369
    }
370
371
372
373
374
375
376
377
378
379
380
381
    /* counting leafs */
    auto leafs = 0u;
    while(currentLeaf != nullptr) {
      ++leafs;
      currentLeaf = currentLeaf->nextLeaf;
    }
    float x = std::log(leafs)/std::log(N+1);
    assert(x == int(x) && "Not supported for this amount of leafs, yet");

    /* actual recovery */
    currentLeaf = leafList;
    if (leafList->nextLeaf == nullptr) {
382
      // The index has only one node, so the leaf node becomes the root node
383
384
      rootNode = leafList;
      depth = 0;
385
    } else {
386
      rootNode = newBranchNode();
387
      depth = 1;
388
389
      rootNode.branch->children[0] = currentLeaf;
      currentLeaf = currentLeaf->nextLeaf;
390
391
392
393
394
      while (currentLeaf != nullptr) {
        recoveryInsert(currentLeaf);
        currentLeaf = currentLeaf->nextLeaf;
      }
    }
395
    LOG("RECOVERY Done")
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
  }

  /**
   * Print the structure and content of the tree to stdout.
   */
  void print() const {
    if (depth == 0) {
      printLeafNode(0, rootNode.leaf);
    } else {
      auto n = rootNode;
      printBranchNode(0u, n.branch);
    }
  }

  /**
   * Perform a scan over all key-value pairs stored in the tree.
   * For each entry the given function @func is called.
   *
   * @param func the function called for each entry
   */
416
  void scan(ScanFunc func) const {
417
418
419
    // we traverse to the leftmost leaf node
    auto node = rootNode;
    auto d = depth;
420
    while ( d-- > 0) {
421
      // as long as we aren't at the leaf level we follow the path down
422
      node = node.branch->children[0];
423
424
425
426
427
    }
    auto leaf = node.leaf;
    while (leaf != nullptr) {
      // for each key-value pair call func
      for (auto i = 0u; i < leaf->numKeys.get_ro(); i++) {
428
        if (!leaf->search.get_ro().b.test(i)) continue;
429
430
431
432
433
434
435
        const auto &key = leaf->keys.get_ro()[i];
        const auto &val = leaf->values.get_ro()[i];
        func(key, val);
      }
      // move to the next leaf node
      leaf = leaf->nextLeaf;
    }
436
  }
437
438
439
440
441
442
443
444
445

  /**
   * Perform a range scan over all elements within the range [minKey, maxKey]
   * and for each element call the given function @c func.
   *
   * @param minKey the lower boundary of the range
   * @param maxKey the upper boundary of the range
   * @param func the function called for each entry
   */
446
  void scan(const KeyType &minKey, const KeyType &maxKey, ScanFunc func) const {
447
448
449
450
451
452
    auto leaf = findLeafNode(minKey);

    bool higherThanMax = false;
    while (!higherThanMax && leaf != nullptr) {
      // for each key-value pair within the range call func
      for (auto i = 0u; i < M; i++) {
453
        if (!leaf->search.get_ro().b.test(i)) continue;
454
455
456
457
458
459
460
461
462
463
        auto &key = leaf->keys.get_ro()[i];
        if (key < minKey) continue;
        if (key > maxKey) { higherThanMax = true; continue; }

        auto &val = leaf->values.get_ro()[i];
        func(key, val);
      }
      // move to the next leaf node
      leaf = leaf->nextLeaf;
    }
464
  }
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

#ifndef UNIT_TESTS
  private:
#endif

  /**
   * Insert a (key, value) pair into the corresponding leaf node. It is the
   * responsibility of the caller to make sure that the node @c node is
   * the correct node. The key is inserted at the correct position.
   *
   * @param node the node where the key-value pair is inserted.
   * @param key the key to be inserted
   * @param val the value associated with the key
   * @param splitInfo information about a possible split of the node
   */
  bool insertInLeafNode(persistent_ptr<LeafNode> node, const KeyType &key,
      const ValueType &val, SplitInfo *splitInfo) {
482
    auto &nodeRef = *node;
483
484
485
    bool split = false;
    auto pos = lookupPositionInLeafNode(node, key);

486
    if (pos < M) {
487
      // handle insert of duplicates
488
      nodeRef.values.get_rw()[pos] = val;
489
      return false;
490
491
    }
    pos = nodeRef.search.get_ro().getFreeZero();
492
    if (pos == M) {
493
494
495
496
497
498
499
500
501
      /* split the node */
      splitLeafNode(node, splitInfo);
      auto &splitRef = *splitInfo;
      auto sibling= splitRef.rightChild.leaf;
      auto &sibRef= *sibling;

      /* insert the new entry */
      if (key < splitRef.key)
        insertInLeafNodeAtPosition(node, nodeRef.search.get_ro().getFreeZero(), key, val);
502
      else
503
        insertInLeafNodeAtPosition(sibling, sibRef.search.get_ro().getFreeZero(), key, val);
504

505
506
      /* inform the caller about the split */
      splitRef.key = sibRef.keys.get_ro()[findMinKeyAtLeafNode(sibling)];
507
508
      split = true;
    } else {
509
      /* otherwise, we can simply insert the new entry at the given position */
510
511
512
513
514
      insertInLeafNodeAtPosition(node, pos, key, val);
    }
    return split;
  }

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
  void splitLeafNode(persistent_ptr<LeafNode> node, SplitInfo *splitInfo) {
      auto &nodeRef = *node;

      /* determine the split position by finding median in unsorted array of keys*/
      auto data = nodeRef.keys.get_ro();
      auto bAndKey = findSplitKey(data);
      auto &splitKey = bAndKey.second;

      // copy leaf
      persistent_ptr<LeafNode> sibling = newLeafNode(node);
      auto &sibRef = *sibling;
      nodeRef.search.get_rw().b = bAndKey.first;
      sibRef.search.get_rw().b = bAndKey.first.flip();
      //PersistEmulation::writeBytes(sizeof(LeafNode) + ((2*M+7)>>3)); // copy leaf + 2 bitmaps

      /* Alternative: move instead of complete copy *//*
      auto data = nodeRef.keys.get_ro();
      auto splitKey = ElementOfRankK::elementOfRankK((M+1)/2, data, 0, M);
      persistent_ptr<LeafNode> sibling = newLeafNode();
      auto &sibRef = *sibling;
      auto j = 0u;
      for(auto i = 0u; i < M; i++) {
        if(nodeRef.keys.get_ro()[i] > splitKey) {
          sibRef.keys.get_rw()[j] = nodeRef.keys.get_ro()[i];
          sibRef.values.get_rw()[j] = nodeRef.values.get_ro()[i];
          sibRef.search.get_rw().fp[j] = nodeRef.search.get_ro().fp[i];
          sibRef.search.get_rw().b.set(j);
          nodeRef.search.get_rw().b.reset(i);
          j++;
        }
      }
      PersistEmulation::writeBytes(j * (sizeof(KeyType) + sizeof(ValueType) + 1) + ((j*2+7)>>3)); // j entries/hashes + j*2 bits*/

      /* setup the list of leaf nodes */
      if (nodeRef.nextLeaf != nullptr) {
        sibRef.nextLeaf = nodeRef.nextLeaf;
        nodeRef.nextLeaf->prevLeaf = sibling;
      }
      nodeRef.nextLeaf = sibling;
      sibRef.prevLeaf = node;
      //PersistEmulation::writeBytes(16*2);

      /* set split information */
      auto &splitRef = *splitInfo;
      splitRef.leftChild = node;
      splitRef.rightChild = sibling;
      splitRef.key = splitKey;
  }

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
  /**
   * Insert a (key, value) pair at the given position @c pos into the leaf node
   * @c node. The caller has to ensure that
   * - there is enough space to insert the element
   * - the key is inserted at the correct position according to the order of
   * keys
   *
   * @oaram node the leaf node where the element is to be inserted
   * @param pos the position in the leaf node (0 <= pos <= numKeys < M)
   * @param key the key of the element
   * @param val the actual value corresponding to the key
   */
  void insertInLeafNodeAtPosition(persistent_ptr<LeafNode> node, unsigned int pos,
      const KeyType &key, const ValueType &val) {
    assert(pos < M);

580
    /* insert the new entry at the given position */
581
582
    node->keys.get_rw()[pos] = key;
    node->values.get_rw()[pos] = val;
583
584
585
586
587
588
589
590
    //PersistEmulation::persistStall();

    /* set bit and hash */
    node->search.get_rw().b.set(pos);
    node->search.get_rw().fp[pos] = fpHash(key);
    //PersistEmulation::persistStall();
    if(sizeof(LeafSearch) > 64) PersistEmulation::persistStall();
    //PersistEmulation::writeBytes(sizeof(KeyType) + sizeof(ValueType) + 2);
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
  }

  /**
   * Insert a (key, value) pair into the tree recursively by following the path
   * down to the leaf level starting at node @c node at depth @c depth.
   *
   * @param node the starting node for the insert
   * @param depth the current depth of the tree (0 == leaf level)
   * @param key the key of the element
   * @param val the actual value corresponding to the key
   * @param splitInfo information about the split
   * @return true if a split was performed
   */
  bool insertInBranchNode(BranchNode *node, unsigned int depth,
      const KeyType &key, const ValueType &val,
      SplitInfo *splitInfo) {
    SplitInfo childSplitInfo;
    bool split = false, hasSplit = false;

    auto pos = lookupPositionInBranchNode(node, key);
611
612
613
614
    if (depth == 1) {
      //case #1: our children are leaf nodes
      auto child = node->children[pos].leaf;
      hasSplit = insertInLeafNode(child, key, val, &childSplitInfo);
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    } else {
      // case #2: our children are branch nodes
      auto child = node->children[pos].branch;
      hasSplit = insertInBranchNode(child, depth - 1, key, val, &childSplitInfo);
    }
    if (hasSplit) {
      BranchNode *host = node;
      // the child node was split, thus we have to add a new entry
      // to our branch node
      if (node->numKeys == N) {
        splitBranchNode(node, childSplitInfo.key, splitInfo);

        host = (key < splitInfo->key ? splitInfo->leftChild
            : splitInfo->rightChild).branch;
        split = true;
        pos = lookupPositionInBranchNode(host, key);
      }
      if (pos < host->numKeys) {
        // if the child isn't inserted at the rightmost position
        // then we have to make space for it
        host->children[host->numKeys + 1] = host->children[host->numKeys];
        for (auto i = host->numKeys; i > pos; i--) {
          host->children[i] = host->children[i - 1];
          host->keys[i] = host->keys[i - 1];
        }
      }
      // finally, add the new entry at the given position
      host->keys[pos] = childSplitInfo.key;
      host->children[pos] = childSplitInfo.leftChild;
      host->children[pos + 1] = childSplitInfo.rightChild;
      host->numKeys = host->numKeys + 1;
    }
    return split;
  }

  /**
   * Split the given branch node @c node in the middle and move
   * half of the keys/children to the new sibling node.
   *
   * @param node the branch node to be split
   * @param splitKey the key on which the split of the child occured
   * @param splitInfo information about the split
   */
  void splitBranchNode(BranchNode *node, const KeyType &splitKey,
      SplitInfo *splitInfo) {
    // we have an overflow at the branch node, let's split it
    // determine the split position
    unsigned int middle = (N + 1) / 2;
    // adjust the middle based on the key we have to insert
    if (splitKey > node->keys[middle]) middle++;
665

666
667
668
669
670
671
672
673
674
    // move all entries behind this position to a new sibling node
    BranchNode *sibling = newBranchNode();
    sibling->numKeys = node->numKeys - middle;
    for (auto i = 0u; i < sibling->numKeys; i++) {
      sibling->keys[i] = node->keys[middle + i];
      sibling->children[i] = node->children[middle + i];
    }
    sibling->children[sibling->numKeys] = node->children[node->numKeys];
    node->numKeys = middle - 1;
675

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    splitInfo->key = node->keys[middle - 1];
    splitInfo->leftChild = node;
    splitInfo->rightChild = sibling;
  }

  /**
   * Traverse the tree starting at the root until the leaf node is found that
   * could contain the given @key. Note, that always a leaf node is returned
   * even if the key doesn't exist on this node.
   *
   * @param key the key we are looking for
   * @return the leaf node that would store the key
   */
  persistent_ptr<LeafNode> findLeafNode(const KeyType &key) const {
    auto node = rootNode;

    auto d = depth;
693
    while (d-- > 0) {
694
695
696
697
698
699
700
701
702
      auto n = node.branch;
      auto pos = lookupPositionInBranchNode(n, key);
      node = n->children[pos];
    }
    return node.leaf;
  }
  /**
   * Lookup the search key @c key in the given leaf node and return the
   * position.
703
   * If the search key was not found, then @c M is returned.
704
705
706
   *
   * @param node the leaf node where we search
   * @param key the search key
707
   * @return the position of the key  (or @c M if not found)
708
   */
709
  unsigned int lookupPositionInLeafNode(const persistent_ptr<LeafNode> node,
710
      const KeyType &key) const {
711
    unsigned int pos = 0u;
Philipp Götze's avatar
Philipp Götze committed
712
    const auto &nodeRef = *node;
713
    const auto hash = fpHash(key);
Philipp Götze's avatar
Philipp Götze committed
714
715
    const auto &keys = nodeRef.keys.get_ro();
    const auto &search = nodeRef.search.get_ro();
716
    for (; pos < M ; pos++) {
717
718
719
      if(search.fp[pos] == hash &&
         search.b.test(pos) &&
         keys[pos] == key)
720
721
        break;
    }
722
723
724
725
    return pos;
  }

  /**
726
   * Lookup the search key @c key in the given branch node and return the
727
728
729
730
731
732
   * position which is the position in the list of keys + 1. in this way, the
   * position corresponds to the position of the child pointer in the
   * array @children.
   * If the search key is less than the smallest key, then @c 0 is returned.
   * If the key is greater than the largest key, then @c numKeys is returned.
   *
733
   * @param node the branch node where we search
734
735
736
   * @param key the search key
   * @return the position of the key + 1 (or 0 or @c numKey)
   */
737
  unsigned int lookupPositionInBranchNode(BranchNode *node,
738
      const KeyType &key) const {
739
    auto pos = 0u;
740
741
742
743
744
    const auto &num = node->numKeys;
    //const auto &keys = node->keys;
    //for (; pos < num && keys[pos] <= key; pos++);
    //return pos;
    return binarySearch(node, 0, num-1, key);
745
746
  }

747
  unsigned int binarySearch(BranchNode *node, int l, int r,
748
                            KeyType const &key) const {
749
    auto pos = 0u;
750
    const auto &keys = node->keys;
751
752
    while (l <= r) {
      pos = (l + r) / 2;
753
754
      if (keys[pos] == key) return ++pos;
      if (keys[pos] < key) l = ++pos;
755
756
      else r = pos - 1;
    }
757
758
759
760
761
762
763
764
765
766
767
768
    return pos;
  }

  /**
   * Delete the element with the given key from the given leaf node.
   *
   * @param node the leaf node from which the element is deleted
   * @param key the key of the element to be deleted
   * @return true of the element was deleted
   */
  bool eraseFromLeafNode(persistent_ptr <LeafNode> node, const KeyType &key) {
    auto pos = lookupPositionInLeafNode(node, key);
769
    if (pos < M) {
770
      node->search.get_rw().b.reset(pos);
771
      return true;
772
    }
773
    return false;
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
  }

  /**
   * Delete an entry from the tree by recursively going down to the leaf level
   * and handling the underflows.
   *
   * @param node the current branch node
   * @param d the current depth of the traversal
   * @param key the key to be deleted
   * @return true if the entry was deleted
   */
  bool eraseFromBranchNode(BranchNode *node, unsigned int d, const KeyType &key) {
    assert(d >= 1);
    bool deleted = false;
    // try to find the branch
    auto pos = lookupPositionInBranchNode(node, key);
790
791
792
793
794
    if (d == 1) {
      // the next level is the leaf level
      auto leaf = node->children[pos].leaf;
      assert(leaf != nullptr);
      deleted = eraseFromLeafNode(leaf, key);
795
      unsigned int middle = (M + 1) / 2;
796
      if (leaf->search.get_ro().b.count() < middle) {
797
        // handle underflow
798
        underflowAtLeafLevel(node, pos, leaf);
799
800
801
802
803
804
805
806
807
808
809
810
811
      }
    } else {
      auto child = node->children[pos].branch;
      deleted = eraseFromBranchNode(child, d - 1, key);

      pos = lookupPositionInBranchNode(node, key);
      unsigned int middle = (N + 1) / 2;
      if (child->numKeys < middle) {
        // handle underflow
        child = underflowAtBranchLevel(node, pos, child);
        if (d == depth && node->numKeys == 0) {
          // special case: the root node is empty now
          rootNode = child;
812
          --depth;
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        }
      }
    }
    return deleted;
  }

  /**
   * Handle the case that during a delete operation a underflow at node @c leaf
   * occured. If possible this is handled
   * (1) by rebalancing the elements among the leaf node and one of its siblings
   * (2) if not possible by merging with one of its siblings.
   *
   * @param node the parent node of the node where the underflow occured
   * @param pos the position of the child node @leaf in the @c children array of
   * the lowest branch node
   * @param leaf the node at which the underflow occured
   */
830
831
  void underflowAtLeafLevel(BranchNode *node, unsigned int pos,
      persistent_ptr<LeafNode> leaf) {
832
833
834
835
836
837
838
    assert(pos <= node->numKeys);
    unsigned int middle = (M + 1) / 2;
    // 1. we check whether we can rebalance with one of the siblings
    // but only if both nodes have the same direct parent
    if (pos > 0 && leaf->prevLeaf->search.get_ro().b.count() > middle) {
      // we have a sibling at the left for rebalancing the keys
      balanceLeafNodes(leaf->prevLeaf, leaf);
839

840
841
842
843
      node->keys[pos - 1] = leaf->keys.get_ro()[findMinKeyAtLeafNode(leaf)];
    } else if (pos < node->numKeys && leaf->nextLeaf->search.get_ro().b.count() > middle) {
      // we have a sibling at the right for rebalancing the keys
      balanceLeafNodes(leaf->nextLeaf, leaf);
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
      node->keys[pos] = leaf->nextLeaf->keys.get_ro()[findMinKeyAtLeafNode(leaf->nextLeaf)];
    } else {
      // 2. if this fails we have to merge two leaf nodes
      // but only if both nodes have the same direct parent
      persistent_ptr <LeafNode> survivor = nullptr;
      if (pos > 0 && leaf->prevLeaf->search.get_ro().b.count() <= middle) {
        survivor = mergeLeafNodes(leaf->prevLeaf, leaf);
        deleteLeafNode(leaf);
      } else if (pos < node->numKeys && leaf->nextLeaf->search.get_ro().b.count() <= middle) {
        // because we update the pointers in mergeLeafNodes
        // we keep it here
        auto l = leaf->nextLeaf;
        survivor = mergeLeafNodes(leaf, l);
        deleteLeafNode(l);
859
      } else {
860
861
862
863
864
865
866
867
868
        // this shouldn't happen?!
        assert(false);
      }
      if (node->numKeys > 1) {
        if (pos > 0) pos--;
        // just remove the child node from the current lowest branch node
        for (auto i = pos; i < node->numKeys - 1; i++) {
          node->keys[i] = node->keys[i + 1];
          node->children[i + 1] = node->children[i + 2];
869
        }
870
871
872
873
874
875
876
877
        node->children[pos] = survivor;
        --node->numKeys;
      } else {
        // This is a special case that happens only if
        // the current node is the root node. Now, we have
        // to replace the branch root node by a leaf node.
        rootNode = survivor;
        --depth;
878
879
      }
    }
880
  }
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

  /**
   * Handle the case that during a delete operation a underflow at node @c child
   * occured where @c node is the parent node. If possible this is handled
   * (1) by rebalancing the elements among the node @c child and one of its
   * siblings
   * (2) if not possible by merging with one of its siblings.
   *
   * @param node the parent node of the node where the underflow occured
   * @param pos the position of the child node @child in the @c children array
   * of the branch node
   * @param child the node at which the underflow occured
   * @return the (possibly new) child node (in case of a merge)
   */
  BranchNode* underflowAtBranchLevel(BranchNode *node, unsigned int pos,
896
                                     BranchNode* child) {
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
    assert(node != nullptr);
    assert(child != nullptr);

    BranchNode *newChild = child;
    unsigned int middle = (N + 1) / 2;
    // 1. we check whether we can rebalance with one of the siblings

    if (pos > 0 &&
        node->children[pos - 1].branch->numKeys >middle) {
      // we have a sibling at the left for rebalancing the keys

      BranchNode *sibling = node->children[pos - 1].branch;
      balanceBranchNodes(sibling, child, node, pos - 1);
      // node->keys.get_rw()[pos] = child->keys.get_ro()[0];
      return newChild;
    } else if (pos < node->numKeys && node->children[pos + 1].branch->numKeys > middle) {
      // we have a sibling at the right for rebalancing the keys
      auto sibling = node->children[pos + 1].branch;
      balanceBranchNodes(sibling, child, node, pos);

      return newChild;
    } else {

      // 2. if this fails we have to merge two branch nodes
      BranchNode *lSibling = nullptr, *rSibling = nullptr;
      unsigned int prevKeys = 0, nextKeys = 0;

      if (pos > 0) {

        lSibling = node->children[pos - 1].branch;
        prevKeys = lSibling->numKeys;
      }
      if (pos < node->numKeys) {

        rSibling = node->children[pos + 1].branch;
        nextKeys = rSibling->numKeys;
      }

      BranchNode *witnessNode = nullptr;
      auto ppos = pos;
      if (prevKeys > 0) {
        mergeBranchNodes(lSibling, node->keys[pos - 1], child);
        ppos = pos - 1;
        witnessNode = child;
        newChild = lSibling;
        // pos -= 1;
      } else if (nextKeys > 0) {
        mergeBranchNodes(child, node->keys[pos], rSibling);
        witnessNode = rSibling;
      } else
        // shouldn't happen
        assert(false);

      // remove node->keys.get_ro()[pos] from node
      for (auto i = ppos; i < node->numKeys - 1; i++) {
        node->keys[i] = node->keys[i + 1];
      }
      if (pos == 0) pos++;
      for (auto i = pos; i < node->numKeys; i++) {
        if (i + 1 <= node->numKeys) {
          node->children[i] = node->children[i + 1];
        }
      }
      node->numKeys--;
      deleteBranchNode(witnessNode);
      return newChild;
    }
  }

  /**
   * Redistribute (key, value) pairs from the leaf node @c donor to
   * the leaf node @c receiver such that both nodes have approx. the same
   * number of elements. This method is used in case of an underflow
   * situation of a leaf node.
   *
   * @param donor the leaf node from which the elements are taken
   * @param receiver the sibling leaf node getting the elements from @c donor
   */
  void balanceLeafNodes(persistent_ptr <LeafNode> donor, persistent_ptr <LeafNode> receiver) {
976
977
    const auto dNumKeys = donor->search.get_ro().b.count();
    const auto rNumKeys = receiver->search.get_ro().b.count();
978
979
980
    assert(dNumKeys > rNumKeys);
    unsigned int balancedNum = (dNumKeys + rNumKeys) / 2;
    unsigned int toMove = dNumKeys - balancedNum;
981
982
983
    if (toMove == 0) return;

    if (donor->keys.get_ro()[0] < receiver->keys.get_ro()[0]) {
984
      // move to a node with larger keys
985
986
987
988
989
990
991
992
993
994
      // move toMove keys/values from donor to receiver
      for (auto i = 0u; i < toMove; i++) {
        const auto max = findMaxKeyAtLeafNode(donor);
        const auto pos = receiver->search.get_ro().getFreeZero();

        receiver->search.get_rw().b.set(pos);
        receiver->search.get_rw().fp[pos] = fpHash(donor->keys.get_ro()[max]);
        receiver->keys.get_rw()[pos] = donor->keys.get_ro()[max];
        receiver->values.get_rw()[pos] = donor->values.get_ro()[max];
        donor->search.get_rw().b.reset(max);
995
996
      }
    } else {
997
      // move to a node with smaller keys
998
      // move toMove keys/values from donor to receiver
999
1000
      for (auto i = 0u; i < toMove; i++) {
        const auto min = findMinKeyAtLeafNode(donor);
For faster browsing, not all history is shown. View entire blame